Обработка изображений: основные методы


Обработка изображений: основные методы
Людмила Прокопенко

Данный метод основан на регулировке резкости. То есть обработка изображения таким образом, чтобы различимость объектов на картинке улучшилась. Резкость, в свою очередь, определяется двумя факторами — разрешение и чёткость. Первый параметр описывает количество элементов, расположенных на минимальном расстоянии. Второй выражает степень размытия границ между объектами. Чем они чётче, тем более детализированной выглядит фотография или картинка.

Обработка изображений
Евгений Жданов

Большинство методов обработки одномерных сигналов (например, медианный фильтр) применимо и к двухмерным сигналам, которыми являются изображения. Некоторые из этих одномерных методов значительно усложняются с переходом к двухмерному сигналу. Обработка изображений вносит сюда несколько новых понятий, таких как связность и ротационная инвариантность, которые имеют смысл только для двухмерных сигналов. В обработке сигналов широко используются преобразование Фурье, а также вейвлет-преобразование и фильтр Габора. Обработку изображений разделяют на обработку в пространственной области (преобразование яркости, гамма коррекция и т. д.) и частотной (преобразование Фурье, и т. д.). Преобразование Фурье дискретной функции (изображения) пространственных координат является периодическим по пространственным частотам с периодом 2pi.

Обработка изображения
Александра Калякина

Изображения, сформированные различными оптико-электронными системами и зарегистрированные с помощью разнообразных приёмников искажаются действием помех различного характера. Искажения изображения вносятся всеми компонентами изображающего прибора, начиная с осветительной системы (например, неравномерность освещенности предмета). Искажения, которые вносит оптическая система, известны еще на этапе её проектирования и называются аберрациями. Искажения, которые вносят электронные приёмники излучения, например ПЗС-матрицы, называются электронным шумом. Помехи затрудняет визуальный анализ изображения и его автоматическую обработку.
Ослабление действия помех достигается фильтрацией. При фильтрации яркость (сигнал) каждой точки исходного изображения, искаженного помехой, заменяется некоторым другим значением яркости, которое признается в наименьшей степени искаженным помехой. Для выполнения фильтрации необходимо выработать принципы таких преобразований, которые основываются на том, что интенсивность изображения изменяется по пространственным координатам медленнее, чем функция помех. В других случаях, наоборот, признаком полезного сигнала являются резкие перепады яркости.
В методах фильтрации при оценке реального сигнала в некоторой точке кадра принимают во внимание некоторое множество (окрестность) соседних точек, воспользовавшись определенной похожестью сигнала в этих точках. Понятие окрестности является достаточно условным. Окрестность может быть образована лишь ближайшими по кадру соседями, но могут быть окрестности, содержащие достаточно много и достаточно сильно удаленных точек кадра. В этом случае, степень влияния (вес) далеких и близких точек на решения, принимаемые фильтром в данной точке кадра, будет совершенно различной. Таким образом, идеология фильтрации основывается на рациональном использовании данных как из рабочей точки, так и из ее окрестности.
При решении задач фильтрации используют вероятностные модели изображения и помехи, и применяют статистические критерии оптимальности. Это связано со случайным характером помехи и стремлением получить минимальное в среднем отличие результата обработки от идеального сигнала. Многообразие методов и алгоритмов фильтрации связано с большим разнообразием математических моделей сигналов и помех, а также различными критериями оптимальности.
Пусть – значение яркости изображения – полезного сигнала на пересечении i-ой строки и j-го столбца, а наблюдаемое на входе фильтра изображение описывается моделью:
Здесь – значение помехи в точке с координатами (i,j), f() – функция, описывающая взаимодействие сигнала и помехи, а I и J – число строк и столбцов в кадре соответственно.

2. Редактирование изображений
Татьяна Сергеевна

Большинство
методов обработки одномерных сигналов
(например, медианный
фильтр)
применимы и к двухмерным сигналам,
которыми являются изображения. Некоторые
из этих одномерных методов значительно
усложняются с переходом к двухмерному
сигналу. Обработка изображений вносит
сюда несколько новых понятий, таких
как связность и ротационная
инвариантность,
которые имеют смысл только для двухмерных
сигналов. В обработке сигналов широко
используются преобразование
Фурье,
а также вейвлет-преобразование и фильтр
Габора.
Обработку изображений разделяют на
обработку в пространственной области
(преобразование яркости, гамма коррекция
и т. д.) и частотной (преобразование
Фурье, и т. д.). Преобразование Фурье
дискретной функции (изображения)
пространственных координат является
периодическим по пространственным
частотам с периодом 2pi.