Магнитная антенна: устройство, принцип работы, назначение


Магнитная антенна: устройство, принцип работы, назначение
Владик Борисов

Вид антенн, реагирующих на магнитную составляющую поля, нашел широкое применение в любых видах промышленности из-за небольших габаритов и приемно-передающих свойств. Их конструкция чаще всего действительно очень проста и представляет собой антенну-штырь (часто используется как антенна для авто), имеющую небольшие размеры по сравнению, например, с логарифмическими антеннами. Последний вид антенн часто встречается в жилых домах, где они обеспечивают телевизионное вещание.

Магнитная антенна своими руками
Ксения Хабарова

При упоминании магнитной антенны сразу наполняют память конструкции на ферритовом стержне, отчасти правильно. Разновидности одного типа устройств. Магнитной называется рамочная антенна, периметр которой много меньше длины волны. Всем известные зигзаги, биквадрат (слова-синонимы) являются родственниками рассматриваемой технологии. Никакого отношения не имеют антенны на магнитном основании. Просто способ крепления. Магнитное основание для антенны надежно удерживает прибор на крыше авто. Поговорим сегодня об особой конструкции. Прелесть магнитных антенн: удается обеспечить сравнительно большое усиление на сравнительно длинных волнах. Размер магнитной антенны мал. Давайте обсудим заглавие, расскажем, как может быть сделана магнитная антенна своими руками.

Антенна
Бондарь Федор

Упрощённо принцип действия антенны состоит в следующем. Как правило, конструкция антенны содержит металлические (токопроводящие) элементы, соединённые электрически (непосредственно или через линию питания — фидер) с радиопередатчиком или с радиоприёмником. В режиме передачи переменный электрический ток, создаваемый источником (например, радиопередатчиком), протекающий по токопроводящим элементам такой антенны, в соответствии с законом Ампера порождает в пространстве вокруг себя переменное магнитное поле. Это меняющееся во времени магнитное поле, в свою очередь, не только воздействует на породивший его электрический ток в соответствии с законом Фарадея, но и создаёт вокруг себя меняющееся во времени вихревое электрическое поле. Это переменное электрическое поле создаёт вокруг себя переменное магнитное поле и так далее — возникает взаимосвязанное переменное электромагнитное поле, образующее электромагнитную волну, распространяющуюся от антенны в пространство. Энергия источника электрического тока преобразуется антенной в энергию электромагнитной волны и переносится электромагнитной волной в пространстве. В режиме приёма переменное электромагнитное поле падающей на антенну волны наводит токи на токопроводящих элементах конструкции антенны, которые поступают в нагрузку (фидер, радиоприёмник). Наведённые токи порождают напряжения на входном импедансе приёмника.

Магнитные антенны: мифы и реальность
Темный Оракул

Добрый день! В данной статье я хочу разобрать варианты установок магнитных антенн на примере ML145. В качестве металлической поверхности будет использоваться небольшой металлический стол размерами приблизительно 1 квадратный метр. Этим будет обеспечено то минимально необходимое, что рекомендуется большинством производителей антенн для её работы. Антенна будет ML145 с немного коротким хлыстом и регулировать антенну я не буду, то есть замеры будут проводиться при одной длине штыря. Настроена антенна в районе 27.5 МГц, но для исследования это не имеет особого значения. При анализе мифов буду пользоваться антенным анализатором АА-330. Все выводы буду строить исходя из реальных графиков КСВ. Антенна у меня хоть и не новая, но полностью перебрана и проверена. Итак, поехали.
Для сначала немного теории о том, как работает любая магнитная антенна. Если совсем коротенько, то любая антенна не может работать без второй половинки – заземления. И чем лучше эта сеть заземления (тут не надо путать с электрическим заземлением, у нас радиоэлектрическое), тем лучше работает наша антенна. Это потому, что магнитное поле возникает между вибратором и заземлением. Поэтому, чем длиннее излучатель и больше сеть заземления, тем и излучение больше. Дальше. У нас магнитная антенна и, следовательно, связь с этой самой землей емкостная. Как известно, любой конденсатор пропускает переменный ток и, поэтому, можно считать, что по переменному току (радиочастоты) мы имеем контакт с землей (кузов машины, иная металлическая поверхность). Зная размеры нашего конденсатора можно легко измерить его емкость. Вот, можно посчитать самостоятельно:
https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%BA%D0%BE%D0%BD%D0%B4%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80
Получается примерно 150 пФ. Зная емкость, можно посчитать сопротивление конденсатора на частоте 27 МГц. Реактивное сопротивление ёмкости XC=1/(2пfC). Исходя из этого мы получаем порядка 30 Ом. Теперь разрушится один из самых главных мифов настройщиков. При работе антенны у нее складываются R излучения и R всех потерь. Теперь, если у нас антенна имеет 50 Ом и потери 30 Ом, то КСВ будет (50+30)/50=1.6. Если КСВ у Вас близко к 1.0, то, наверное, Ваша антенна имеет далеко не 50 Ом и поэтому КСВ близко к единице. (20+30)/50=1.0. Но КПД Вашей системы в первом случае будет 50/(50+30)=62%, а во втором – 20/(20+30)=40%, то есть в первом случае антенна будет излучать в 1.5 раза больше. Вот тебе и КСВ 1.0 и 1.6. Почему так, а не иначе? Всё просто. Величина R потерь неизменна и меньше стать не может, а вот вырасти – запросто. Поэтому КСВ 1.0 говорит о том, что что-то не так в Вашей антенне. А вот КСВ 1.5 – это то, что и должно быть на самом деле.
Перейдём, наконец, к самому эксперименту.
Всеми производителями рекомендуется устанавливать антенну в геометрический центр крыши автомобиля. Это и проделаем.

Вот и график КСВ:

Небольшие пояснения. Красный график – это КСВ (делить вертикальную шкалу на 10). Зеленый график – это активное сопротивление антенны, синий график – это потери. Напомню, что мы как раз посчитали наши потери на магните около 30 Ом и, судя по графику, это именно так. Возьмем за настройку антенны наш минимум – 27.000 Мгц, как основную для работы на этой частоте, и сравним с тем, что получим при основных ошибках установки антенны. И попробуем разобраться, что и почему именно так.
1) Очень часто антенна в центре крыши совсем не хочет настраиваться в минимум КСВ, но прекрасно настраивается на краю крыши. Объясняется это очень просто. Для антенны всегда лучше один более длинный противовес, нежели несколько коротких. Многие воскликнут: “А как же диаграмма направленности? Будет перекос!” Перекос будет, но на слух его уловить будет очень сложно. Напомню, что один кубик на S-метре – это 6 ДБ по мощности. А 6 ДБ – это 4-х кратная разница. В реальном эфире трудно уловить разницу между 7 и 8 кубиками. А 6 ДБ получить таким перекосом я считаю нереальным. Ну, если не так, то растреляйте. Смоделированный в MMAN’е вертикал с одним противовесом имел перекос диаграммы 3-4 ДБ. Вот и график КСВ:

Минимум КСВ стал на 26.600 Мгц. Резонансная частота антенны понижается при улучшении «земли». Очень часто бывает так, что при установке антенны в центр крыши не хватает длины штыря для настройки в районе 26.500 Мгц. А как только поставишь скраю, на угол, то всё становиться нормально. Бывали случаи, что штырь приходилось резать на 20 см. В такой ситуации лучше не укорачивать полотно антенны, а убрать виток/полвитка из удлинняющей катушки в основании антенны и, тем самым, сохранить КПД антенны.
2) Одной из частых ошибок при установке антенны является кусок толстой, как правило, джинсовой ткани под магнит. Некоторые даже предлагают свою модернизацию по замене резиновой галоши на джинсу… При такой установке минимум КСВ смещается в более высокочастотную область. В моем случае КСВ сместилось на 200Кгц. Но на этом все бяки такого использования не заканчиваются. Вот график КСВ с тряпочкой и в центре:

НО!!! Страна у нас достаточно дождливая и поэтому тряпочка намокнет:

КСВ не изменилось. Всё, вроде бы, хорошо. Но постепенно Ваша тряпочка будет впитывать различные соли, что особенно актуально в зимний период времени. И, как следствие, через непродолжительное время коррозия сделает свое гиблое дело. Тем более что материалы, используемые в антеннах, зачастую несовместимы и при появлении влаги просто начинают разрушаться. Постепенно вода будет попадать под магнит (вода всегда найдет дырочку) и прямиком в кабель. Ну, а тот, в свою очередь, превратится в эквивалент нагрузки, а не в антенну!!!
3) Со временем резиновая галоша под магнитом выходит из строя и её просто выбрасывают. Галоша входит в состав обкладок конденсатора и, в отсутствии галоши, наш конденсатор изменяет емкость. Резонанс становиться очень острым и тут уже сложно угадать, так как вместо галоши будет краска или подстилающая поверхность вашей машины а свойства их неизвестны.

4) Самое плохое, что может произойти с вашей антенной – это отсутствие фольги или электрического контакта с оплеткой кабеля. Проверяется просто. Я беру и включаю мультиметр на прозвонку диодов и касаюсь одним щупом юбочки антенного разьема, а другим – к фольге, немного прижав к оной. В идеале должно показать падение 0 вольт. Считаю падение до 0.1 вольта приемлемым. Если показания иные, то разбираем, чистим магнит, проходим мелкой шкуркой.
Вот график без фольги и с тряпочкой.

Думаю и так понятно. И это даже при условии, что в середине пятачок играет роль. В реальной жизни у него контакта тоже нет и картина будет еще плачевней.

5) А теперь посмотрим, что произойдет, если к условиям выше добавить водичку. Минимум КСВ сместился на 600 Кгц:

Немного другой вариант, когда фольга еще работает, но галоша вышла из строя и вы подложили тряпочку: